

An Integrated Solid-State LED Luminaire for General Lighting

January 30, 2008

The Department of Energy

Award Number: DE-DE-FC26-06NT42932

Principal Investigator: Kevin Dowling, Philips SSL

The Team

Kevin Dowling, PI Philips Solid State Lighting

3 Burlington Woods, 4th floor Burlington, MA 01803

Tel: 781.418.9236

Email: kevin@colorkinetics.com

Team Members

Fritz Morgan

Ihor Lys

Houayda Chamoun

Brad Kolsky

Ron Roberts

Ryan Williamson

Thomas Yuan

Cree, Santa Barbara Technology Center

340 Storke Road

Goleta CA

Tel: 805 968 9460

Email: Thomas_yuan@cree.com

Team Members

Bernd Keller

Monica Hansen

Arpan Chakraborty

Goals

This proposed program will address these issues by creating a high-efficiency light source **equivalent** to a 60W Edison-base A-lamp that will achieve substantial benchmarks in efficacy, cost, lifetime and performance.

Program Goals

- 800 lumens
- 90 CRI
- 80 lpw

The Systems Approach

Power: Earlier Developments

CREE

Power Conversion & Drivers

- From Line voltage to LEDs using DSP control
- "Instant On" and dimmable.
- Achieving >92% efficiency (~0.9W for 10W system)
- Control each string of LEDs
- Except transformer all COTS
- Small parts count
- Metal film caps and one electrolytic

Mechanical Configuration

- Analyzed many configurations
- Key issue is managing thermal
- Assembly issues as well
- Maximize light output without compromising reliability

CREE

LED-based PAR 38

- Tightly coupled system
- An inter-related combination of thermal, optical, electrical, mechanical, control and more.
- A decision in any aspect has a ripple effect through the system
- Carefully analyzed with system model prior to any changes.

Thermal Management Progress

- Several iterations of thermal analysis.
- Developed 'chimney' effect for generating airflow without active means in all orientations
- Determining effectiveness in a variety of orientations and developing worst case scenarios
- Issue lessens with improved efficacy

LED Approach - Larger Number of Small Die

- Larger numbers of smaller die
- Benefits
 - Optical Uniform light output
 - Electrical Lower currents = lower cost LED drives
 - Thermal Lower power density
 - Packaging Potentially lower cost
 - Efficiency Overall improved
- Downside
 - Yield potentially lower due to parts count

Hybrid LED approach

- Mixed PC Converted Blue + Red die
- Simulations showed
 - High efficacy
 - High CRI

CREE

Hybrid Approach

- Mix of phosphor coated and direct emission
- Developed process for selective phosphor coating
- Resultant CCT dependent on
 - Amount of phosphor
 - Flux from direct emission
- Closer to Black Body Curve
- Desirable to have independent control of DE vs PC LEDs

Hybrid Geometry

- Issues include
 - Relative placement
 - Visual artifacts
 - Interconnects
 - Symmetry

Example simulations and CT 'cut' across two configurations

Optics: No photon left behind

- Good optical design ensures
 - Beam shape appropriate to application
 - No undesirable lighting artifacts and textures
 - Maximizing output
 - Capture of LED output and directing it to where you need it
- One of the most critical design aspects for LED lighting systems

Primary Optic

- Molded Silicone lens
- Large size poses risk
- Need large size to reduce stray losses due to sidewalls
- Needs to register to LED array and to secondary optic
- Approaches
 - Dimensioned Primary lens
 - Ray trace to determine losses
 - Distribution in cut plane

Secondary Optic

- Faceted CPC-type optic to capture and direct light
- Molded polycarbonate metallized
- Low loss, high quality molding and coating
- Registration to mechanical features in LED module

Feed-forward Control

- Additional on-board control in the form of feedforward model of lumen depreciation
 - Model accommodates aging and thermal characteristics of system through open-loop modeling of system
 - Use knowledge of temperature and time history to feed to model
 - Testing underway now

Performance (Fall)

Metric	Result
Luminous Flux	610 lumens
CRI	86
ССТ	2900K
Power Factor	0.9
Efficacy	56 lpw
Beam angle	25 degrees

Schedule and Milestones - Next

- Critical Pieces over coming months
 - 3rd generation prototype completion and testing
 - Feed forward modeling
 - Continued elevation and evaluation of output
 - Luminous flux
 - Power consumption
 - Efficacy
 - Light quality distribution, CRI, color
 - Evolve mechanical configuration and thermal analysis
 - Power supply reliability analysis

Thoughts for SSL - Lamp Socket Module

